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Abstract

The Weibull parameter m of the strength distribution of ceramics under high stress gradients differs from that for moderate stress
gradients. This is shown for contact loading. Bars were loaded by oppositely concentrated forcers via rollers. For most investigated
materials, measured contact strengths showed strongly reduced Weibull exponents compared with those from 4-point bending tests.
This was the reason for a study, in which the effective volumes and surfaces for the two tests were compared and the influence of the

strong stress gradients was considered. Under the assumption of the Weibull theory being valid, the effective surfaces and volumes
were computed for the normal stress and the energy release rate criteria. In the second part, it will be shown that the strongly non-
homogeneous stresses lead to a reduced Weibull exponent.

# 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Ceramic materials fail by the unstable extension of
flaws. The flaw size distribution is responsible for the
large scatter of these materials and for effect of the size of
a component on the strength.1�3 The effect of a multi-
axial stress distribution in a component on the strength
distribution is described by the multiaxial Weibull theo-
ry.4�6 The failure probability is given by the relation

F ¼ 1� exp �
�c
�0

� �m� �
ð1Þ

�c is the critical value of a characteristic stress. The
Weibull parameter m depends on the material, whereas
�0 depends on the material and in addition on the mul-
tiaxial stress distribution in the component. For a
detailed description see Ref. 7. The assumption for this
theory is a constant stress along the flaw. For moderate
stress gradients this assumption is fulfilled approxi-
mately. For large stress gradients as in contact loading
this assumption is not valid and m depends on the stress
distribution.8
In Ref. 9 a test was developed for the determination
of strength under contact loading. Whereas conven-
tional strength tests describe the failure behaviour of
materials under simple stress states which, in most cases,
comprise uniaxial stresses with relatively small stress
gradients, the strength behaviour under strongly non-
homogeneous and multiaxial stress states is measured in
the test presented here.
The contact strength test proposed in Ref. 9 is illu-

strated in Fig. 1. Two cylinders of 8 mm diameter made
of hardened steel are pressed onto the rectangular
specimen with a force P.
In Fig. 2 the Weibull parameters for several ceramics

are compiled. In this representation the rectangles
represent the 90% confidence intervals. The commer-
cial alumina investigated were: V38, CeramTec, Plo-
chingen (an alumina containing about 4 wt.% glass
phase), EKasic F (SiC), Wacker Ceramics, Kempten,
Frialit F99.7 (dm�9 mm), and Frialit F99.9 (dm�2.3
mm) both from Friatec, Friedrichsfeld. Frialit F99.7
was tested in two different surface states characterised
by the following surface roughness data: material
F99.7(I) Ra=0.7 mm, Rpk=0.3 mm, Rk=1.6 mm,
Rvk=1.7 mm, material F99.7(II) Ra=1.0 mm,
Rpk=0.4 mm, Rk=2.0 mm, Rvk=2.2 mm. The
other materials were a fine-grained AlN (CeramTec,
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Marktredwitz) and a low-strength HPSN (NH209,
Annawerk, Rödental).
The experiments on these ceramics yielded8,9

. a linear relation between the Weibull parameters
�0 for bending strength and contact strength with
roughly
ð3Þ
�0; bend � �0; cont

as shown in Fig. 2a, where the 90% confidence
intervals for the two tests are plotted,

. and lower Weibull exponents in the roller tests
compared to the four-point bending tests as shown
in Fig. 2b and c by the 90% confidence intervals
for the second Weibull parameter m. The only
exception was found for the fine-grained Al2O3

(Frialit F 99.9). This material showed identical
Weibull exponents in bending and contact loading.

From microscopic observation of fracture surfaces, it
can be concluded that failure starts from surface flaws.
In a recent paper, it could be shown that for cracks
extending directly at the end of the Hertzian contact
zone, the effective stress intensity factor depends linearly
on the crack size. This behaviour results in reduced
Weibull exponents for the strength.8 In the present
investigation, a more detailed analysis will be given.
2. Stresses for opposed loads

For contact between the cylinders and the plane bar,
the pressure distribution acting over the region
�s4x4s is

pðxÞ ¼ p0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðx=sÞ2

q
; p0 ¼

2P

s� t
ð2Þ

with the maximum pressure p0 related to the total force
P (Fig. 1). Under this load, the failure relevant stress
components are9

�x ¼ �2p0

ð1
0

1

u

sinhu� ucoshu

sinh2uþ 2u
cos

ux

H
J1ðus=HÞcosh

uy

H
du

� 2p0

ð1
0

y

H

sinhu

sinh2uþ 2u
cos

ux

H
J1ðus=HÞsinh

uy

H
du
Fig. 1. A two-roller test device for contact strength tests and Hertzian pressure distribution.
Fig. 2. Interrelation between Weibull parameters of contact strength and four-point bending strength tests: (a) characteristic strength �0, (b) and (c)

Weibull exponent m (widths and heights of rectangles given by the 90% confidence intervals).
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�xy ¼ 2p0

ð1
0

1

u

ucoshu

sinh2uþ 2u
sin

ux

H
J1ðus=HÞsinh

uy

H
du

� 2p0

ð1
0

y

H

sinhu

sinh2uþ 2u
sin

ux

H
J1ðus=HÞcosh

uy

H
du

ð4Þ

with the Bessel function of first order, J1. The maximum
tensile stress in the bar is reached at the upper and lower
surfaces, y=�H, directly beside the rollers (x�0). At
these locations

�max ¼ 0:490
P

Ht
ð5Þ
3. Conventional Weibull evaluation

In a first fracture mechanics evaluation, the Weibull
method is applied. It ignores the strong stress gradients
in the contact region. The equivalent stress �eq repre-
senting the multiaxial stress state can be written as the
product of the maximum principal stress �1 and a func-
tion h

�eq ¼ �1 hð�; �Þ ð6Þ

where �=�2/�1 describes the multiaxiality and � is the
angle between the maximum principal stress and the
crack normal (see e.g. Ref. 7). The special function h
depends on the choice of the local failure criterion. In
the following considerations, surface cracks under plane
stress conditions are assumed only.
The maximum principal stress varying with the loca-

tion in the component can be expressed by a reference
stress �* (e.g. the maximum principal stress in the com-
ponent) and a geometric function

�1 ¼ �	 gðx; y; zÞ: ð7Þ

The failure probability under multiaxial loading is

F ¼ 1� exp �
Seff

S0

�	

�0

� �m� �
ð8Þ

with the effective surface Seff computed by

Seff ¼
1

2�

ð
ðSÞ

gm
ð2�
0

hmd�

� �
dS ð9Þ

(integration carried out over positive �1). In the follow-
ing sections, only uniaxial and biaxial stress states are
considered. In the special case of a uniaxial stress
(�=0), h is constant and Eq. (9) simplifies to

Seff ¼
1

2�

ð2�
0

hmd�

ð
ðSÞ

gmdS ð10aÞ

In this case, the ratio of the effective surfaces for two
different specimens (subscripts 1 and 2) is given by
Seff ;1=Seff ;2 ¼

ð
S1

gm1 dS=

ð
S2

gm2 dS ð10bÞ

independently of the special failure criterion.

3.1. Normal stress criterion

As an appropriate failure criterion for natural cracks,
the normal stress criterion is considered. For uniaxial
stresses (�=0)

�eq ¼ �1cos
2�; h ¼ cos2� ð11Þ

it results

Seff ¼
1ffiffiffi
�

p
Gðmþ 1

2Þ

Gðmþ 1Þ

ð
ðSÞ

gmdS ð12Þ

For the special case of a four-point bending bar with an
inner loading span L and thickness B, we obtain

Seff ;4PB ¼
1ffiffiffi
�

p
Gðmþ 1

2Þ

Gðmþ 1Þ
BL ð13Þ

The effective surface for the contact loading test was
determined numerically at the surface stresses shown in
Fig. 3a. The results are expressed as

Seff ;cont ¼ l
Gðmþ 1

2Þffiffiffi
�

p
Gðmþ 1Þ

BW ð14Þ

with the coefficient l plotted in Fig. 3b. An approxima-
tion of this coefficient reads

l ffi
2ffiffiffiffi
m

p ð15Þ

The ratio between the contact strength and the four-
point bending strength results from (8) and (10b)

�cont
�4PB

¼
Seff ;4PB

Seff ;cont

� �1=m

¼
L

lW

� �1=m

ffi

ffiffiffiffi
m

p
L

2W

� �1=m

ð16Þ
3.2. Energy release rate criterion

Under loading by normal and shear stresses (�n, �), an
equivalent stress based on the complanar energy release
rate criterion reads

�eq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ k�2

p
ð17Þ

In the uniaxial loading case, it holds for the special case
k=1 that

�eq ¼ �1cos� ð18Þ

and therefrom the effective surface results as
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Seff ¼
1ffiffiffi
�

p
Gðmþ1

2 Þ

Gðm2 þ 1Þ

ð
ðSÞ

gmdS ð19Þ

and

Seff ;4PB ¼
1ffiffiffi
�

p
Gðmþ1

2 Þ

Gðm2 þ 1Þ
BL ð20Þ

Seff ;cont ¼ l
1ffiffiffi
�

p
Gðmþ1

2 Þ

Gðm2 þ 1Þ
BW ð21Þ

Eq. (16) is valid also in the case of the energy release
rate criterion. With the usual specimen data L=20 mm,
W=3 mm, it results for m=10: �cont=1.26�4PB. Such a
higher contact strength is not found by the experiments
(Fig. 2a). Moreover, the Weibull exponents have to be
identical for both tests. Also this result cannot be seen
in the experiments.
4. Single surface cracks

In conventional Weibull theory, the stresses in a
component are assumed to be constant over the crack
dimensions. This assumption is always fulfilled for
bending tests, but violated in a contact strength test
near the loading cylinders. In order to include the strong
stress gradients into the failure analysis, single natural
cracks shall now be considered (modelled as edge
cracks).
The stress state in a bar under contact loading by

cylinders may be demonstrated here for the case of
s/H=0.1. The stress components �x and �xy are plotted
in Fig. 4 over the cross-section of the bar under contact
loading. The stress component �x is positive only in a
very thin surface layer and then changes to compres-
sion. The shear stress �xy is zero at the free surface and
increases very strongly with increasing depth. The
smaller the distance from the contact area is, the steeper
are the stress gradients.
From the stresses present in the uncracked body, the

stress intensity factors KI and KII can be computed
according to

KI ¼

ða
0

hIð	; aÞ�xð	Þd	 ð22Þ
Fig. 3. (a) Axial stress along the free surface of a bar under cylinder contact loading, (b) coefficient l defined by Eq. (14) as a function of m.
Fig. 4. (a) Geometric data for a bar loaded by two opposed cylinders, (b) stress normal to cross-section AA, (c) shear stress in cross-section AA.
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KII ¼

ða
0

hIIð	; aÞ�xyð	Þd	 ð23Þ

with the weight functions hI for mode-I and hII for
mode-II loading and the distance 	 from the surface.
The results obtained with the weight function solu-

tions given in Ref. 10 are plotted in Fig. 5a and b. From
this representation, it is obvious that the mode-I stress
intensity factors are positive first due to the tensile
stresses near the free surface and then become negative
at larger depths. In this case, at least partial crack clo-
sure must occur. The remaining stress intensity factor
KII is reduced by crack surface friction.
The effective stress intensity factor Keff, combining KI

and KII, was computed in Refs. 8 and 11 by a coplanar
energy release rate criterion

Keff ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

I þ K2
II

p
for KI > 0

KII þ �KI for KI < 0

	
ð24aÞ

with the coefficient � chosen as �=0.5.
As a further mixed-mode criterion, the empirical
Richard formula12 was applied. It provides the effective
stress intensity factor13

Keff ¼

1
2KI þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4K

2
I þ

3
2K

2
II

q
for KI > 0ffiffi

3
2

q
ðKII þ �KIÞ for KI < 0

8<
: ð24bÞ

The resulting effective stress intensity factors are
shown in Fig. 6. For the coplanar energy release rate
criterion, the representation Fig. 6a shows that large
cracks with a/W>a*/W (where a*/Wffi 0.015) will pre-
dominantly fail near x/s=1, whereas smaller cracks fail
at a larger distance from the Hertzian contact zone. In
the case of the Richard criterion (Fig. 6b), the same
general behaviour is found, but now with a character-
istic crack length of a*/Wffi 0.01. For the cracks near
x/s=1 the slope in the log-log plot is for both criteria
�1 and in case of larger distance �1/2, i.e.

Keff ;max /
a for a=W > a	=Wffiffiffi
a

p
for a=W4 a	=W

	
ð25Þ
Fig. 5. Stress intensity factors for edge cracks: (a) mode-I and (b) mode-II stress intensity factor (s/H=0.1).
Fig. 6. Effective stress intensity factor Keff for variably deep edge cracks as a function of the distance x from the contact centre: (a) computed with

the coplanar energy release rate criterion, (b) with the Richard mixed-mode criterion.
T. Fett et al. / Journal of the European Ceramic Society 23 (2003) 2031–2037 2035



The considerations made before are sufficient to
decide whether or not a given crack is able to start by
spontaneous extension. Unfortunately, these results do
not give any information on further crack growth pha-
ses, since the computations made before as well as the
computations reported in Ref. 8 were based on the
assumption of a coplanar crack extension.
Under this assumption, it would result from Fig. 6

that crack arrest is possible, because the effective stress
intensity factors decrease again for large crack depths.
If a crack starts spontaneous propagation at an initial

crack depth a, the crack abruptly changes its direction
into the direction with a maximum mode-I contribution
or, depending on the chosen criterion, into the direction
with a maximum local energy release rate by generating
a kink (Fig. 7a). In both cases, crack extension is
roughly represented by the local condition KII=0.
In a very good approximation, this condition is ful-

filled for a crack shape coinciding with the maximum
principal stress trajectory (Fig. 7b and c).
Extension along this curve ensures that the mode-II

stress intensity factor disappears after a small amount of
crack growth and the mode-I stress intensity factor
increases monotonically. Therefore, it is not necessary
to discuss crack arrest effects.
In Fig. 8 the ratio of the Weibull exponents for con-

tact loading and bending is plotted versus the ratio (KIc/
�c)

2 which for the bending strength is proportional to
the initial crack size. It is obvious that for short cracks
the Weibull exponents in both tests are identical,
whereas for longer cracks lower exponents for the con-
tact strengths are visible.
The change of the Weibull exponent is in agreement

with the computations made before. If the asymptotic
behaviour of the flaw size distribution can be described
by a power law

fðaÞ /
1

ar
; ð26Þ
the related strength distribution F(�c) reads

Fð�cÞ ¼ 1� exp �zS
a0
a


 �r�1� �
ð27Þ

where z is the number of cracks per surface unit and S
the surface of the component. Introducing the relation
between crack size a and strength �c in the form of

a / ��p
c ð28Þ

into (27) yields

Fð�cÞ ¼ 1� exp �
�c
�0

� �m� �
ð29Þ

with the characteristic strength �0 and

m ¼ pðr� 1Þ ð30Þ

As a consequence of Eq. (25), we obtain the usual
value of p=2 for the failure of short cracks and for
cracks in the absence of strong stress gradients

mshort ¼ m4PB ¼ 2ðr� 1Þ: ð31aÞ
Fig. 7. (a) Kink angle,13 (b) fracture paths under contact loading, (c) related first principal stress trajectories.
Fig. 8. Ratio of Weibull exponents for contact and bending strength

versus the initial crack size a/(KIc/�c)
2.
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For longer cracks with the failure being directly at the
end of the Hertzian contact

mlong ¼ r� 1; ð31bÞ

i.e. the ratio of the Weibull exponents of contact and
bending strength is expected to be 1 for short cracks and
1
2 for longer cracks.
5. Summary

The flaw size distribution is responsible for the large
scatter in strength of ceramic materials and for effect of
the size of a component on the strength. Under moder-
ate stress gradients the Weibull parameter m represent-
ing the scatter of the strength distribution is
independent on any chosen loading situation. In the
case of ceramics under high stress gradients m differs
from that for moderate stress gradients. This is illu-
strated for a contact loading test, where most ceramics
strengths showed strongly reduced Weibull exponents
compared with those from four-point bending tests.
This effect is interpreted as the consequence of non-
homogeneous stresses with steep gradients.
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